Commutativity
Commutativity: " x,
y ÎÂ,
– x+y = y+x
– x•y = y•x
Distributive laws
Distributivity: " x,
y, z ÎÂ
» x•(y+z) = x•y + x•z
» x + (y•z) = (x+y)•(x+z)
Provable via perfect induction
Associativity
·
(x+y) + z = x + (y+z)
·
(x•y)•z = x•(y•z)
DeMorgan's laws
·
THESE ARE IMPORTANT
·
(x+y)’ = x’•y’
·
(x•y)’ = x’+y’
Absorption (Covering)
·
x + x•y = x
·
x•(x+y) = x
·
Proof: x + x•y = x•1 + x•y = x•(1+y) = x•(y + 1)= x•1 = x
QED (second part
true by duality)
Consensus
·
xy + x’z + yz = xy + x’z
·
(x+y)•(x’+z)•(y+z) = (x+y)•(x’+z)
·
Proof: xy + x’z + yz = xy + x’z + (x+x’)yz = xy + x’z + xyz +
x’yz= (xy + xyz) + (x’z + x’zy) = xy +
x’z
QED.
Clutching
- xy+xy’=x
- (x+y)(x+y’)=x
No comments:
Post a Comment