·
Use sum-of-products simplification on the zeros
of the function in the K-map to get f’.
·
Recall that the complement of a boolean function
can be obtained by (1) taking the
dual and (2) complementing each literal. (aka generalized
DeMorgan’s rule).
·
Complement f’ using DeMorgan’s Theorem to get f.
Example
·
Find a simplified product-of-sums expression for
f(a,b,c,d) = M(0,1,7,15).
·
(f(a,b,c,d))’ =a’b’c’ + bcd
·
fdual (a,b,c,d) = (a’+b’+c’)(b+c+d)
·
f(a,b,c,d) = (a+b+c)(b’+c’+d’)
No comments:
Post a Comment